Face pose estimation with automatic 3D model creation in challenging scenarios
نویسندگان
چکیده
This paper proposes a new method to perform real-time face pose estimation for ±90 yaw rotations and under low light conditions. The algorithm works on the basis of a completely automatic and run-time incremental 3D face modelling. The model is initially made up upon a set of 3D points derived from stereo grey-scale images. As new areas of the subject face appear to the cameras, new 3D points are automatically added to complete the model. In this way, we can estimate the pose for a wide range of rotation angles, where typically 3D frontal points are occluded. We propose a new feature re-registering technique which combines views of both cameras of the stereo rig in a smart way in order to perform a fast and robust tracking for the full range of yaw rotations. The Levenberg-Marquardt algorithm is used to recover the pose and a RANSAC framework rejects incorrectly tracked points. The model is continuously optimised in a Bundle Adjustment process that reduces the accumulated error on the 3D reconstruction. The intended application of this work is estimating the focus of attention of drivers in a simulator, which imposes challenging requirements. We validate our method on sequences recorded in a naturalistic truck simulator, on driving exercises designed by a team of psychologists.
منابع مشابه
تخمین چنددوربینی حالت سه بعدی انسان با برازش افکنش مدل اسکلت سه بعدی مفصل دار در تصاویر سایه نما
Automatic capture and analysis of human motion, based on images or video is important issue in computer vision due to the vast number of applications in animation, surveillance, biomechanics, Human Computer Interaction, entertainment and game industry. In these applications, it is clear that 3D human pose estimation is an essential part. Therefore, its accuracy has a great effect on the perform...
متن کاملLooking at Faces: Detection, Tracking and Pose Estimation
Humans can effortlessly perceive faces, follow them over space and time, and decode their rich content, such as pose, identity and expression. However, despite many decades of research on automatic facial perception in areas like face detection, expression recognition, pose estimation and face recognition, and despite many successes, a complete solution remains elusive. Automatic facial percept...
متن کاملAutomatic head pose estimation with Synchronized sub manifold embedding and Random Regression Forests
Head pose can indicate the eye-gaze direction and face toward which is an important part of human motion estimation and understanding. Due to physical factors of the camera, shooting environment, as well as the appearance change of humanity, the head pose estimation becomes a challenging task. Synchronization sub manifold embedding can find the internal structure of nonlinear data for nonlinear...
متن کاملTowards Accurate Markerless Human Shape and Pose Estimation over Time
Existing markerless motion capture methods often assume known backgrounds, static cameras, and sequence specific motion priors, limiting their application scenarios. Here we present a fully automatic method that, given multi-view videos, estimates 3D human pose and body shape. We take the recently proposed SMPLify method [12] as the base method and extend it in several ways. First we fit a 3D h...
متن کاملAutomatic, Effective, and Efficient 3D Face Reconstruction from Arbitrary View Image
In this paper, we propose a fully automatic, effective and efficient framework for 3D face reconstruction based on a single face image in arbitrary view. First, a multi-view face alignment algorithm localizes the face feature points, and then EM algorithm is applied to derive the optimal 3D shape and position parameters. Moreover, the unit quaternion based pose representation is proposed for ef...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 30 شماره
صفحات -
تاریخ انتشار 2012